

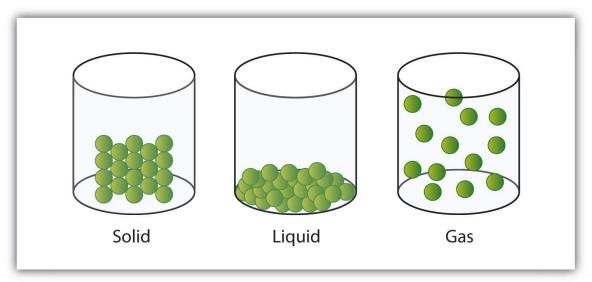
SNC 1DI

Chemistry: Atoms, Elements & Compounds - PART 1

Lesson	Topic Lesson		Lesson Learning Goals	
1.1	Why Study Chemistry	☐ What is Chemistry?	be able to define what chemistry is and its importance in human life	QL: pg 137 Qs 7&8 HW: Chemistry Around Us
1.2	Chemistry Basics	☐ Particle Theory ☐ Changes of State	state all of the postulates of the particle theory describe physical changes of state as related to the particle theory	HW : pg140 Q#1-5
1.3	Observing & Classifying Matter	Classification of Matter	distinguish between pure substances & mixtures as well as classify each substance in a subcategory (element/compound, heterogeneous/solution)	QL: pg 146 Q 7-11 HW : pg143 Q#1-4 Pg147 Q#1-12
1.4	Properties	Physical & Chemical Properties	describe physical and chemical properties as related to the characteristics of the substance using proper scientific terminology	QL: pg 149 Q#3-7 HW: Pg161 Q#1-3, 6
	Lab	Using Properties to Identify Substances	 conduct an inquiry to identify physical & chemical properties of common household substances distinguish unknown substances based on their physical & chemical properties 	Finish Lab
1.5	Physical & Chemical Changes	Physical & Chemical Changes	 identify the difference between a physical & chemical change understand the 5 key observations to indicate a chemical change classify a reaction as physical or chemical 	HW : pg161 Q#4,5,8,11 REVIEW: pg164 Q#1-19
	Lab	Observing Physical & Chemical Changes	conduct an inquiry to identify physical & chemical changes during a reaction classify a reaction as either physical or chemical	Finish Lab
1.6	Atomic Theory	☐ Atomic Theory History ☐ The Atom: Proton, Neutron & Electron	 describe observational & theoretical evidence that contributed to the modern atomic model describe the characteristics of the modern atomic model such as particles, charge, location and relative mass 	HW: pg 175 Q#1-6 WS: Working with Atomic Information
1.7	The Elements	Bohr-Rutherford Diagrams Electron Dot Diagrams	 identify and use the symbols for the first 20 elements describe patterns in the arrangement of electrons of the first 20 elements using Bohr-Rutherford diagrams 	WS: BR Diagrams WS: Which Element Am I? HW: pg 187 Q#1-

Chemistry is the ______ We study chemistry because: 1. ______ 2. _____ 3. _____ 4. ____

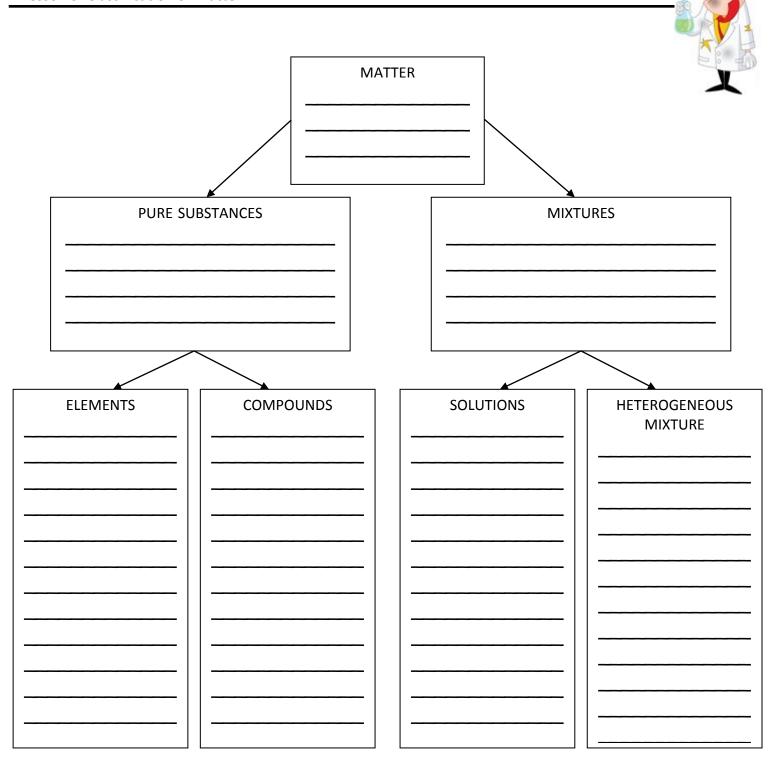
Chemistry Around Us


Starting from when you woke up this morning, write down all of the chemistry to have encountered today.

Lesson 2: Particle Theory of Matter

Over the centuries, scientists have created many models to explain what matter is. One of the most enduring models of matter is the particle theory. More than 2000 years ago in Greece, a philosopher named Democritus suggested that matter was made up of tiny particles. From there the particle theory was developed into 4 postulates;

1.	
2.	
3.	
4.	


Applying the PT to Substances

State	Solid	Liquid	Gas
Spaces between	Very small		
particles			
Forces between			Relatively weak
particles			
A		Clumps of particles	
Arrangement		that slide past each	
of particles		other	

Thinking Questions – Use your knowledge of the particle theory to answer each of the following questions.

- 1. Explain these common situations:
 - a. why smells of good food diffuse from a bag to your nose
 - b. You have 100 mL of water in a beaker. You add 20 mL of table salt. The water level rises to only 105 mL.
 - c. 50 mL of ethyl alcohol and 40 mL of water combined in a beaker add up to 90 mL of liquid

Heat Change -

200	
	}
	7

Physical Property – Hardness -Malleability -**Ductility** -**Melting and Boiling Points** -<u>Lustre</u> -**Solubility** -Viscosity -**Density** -**Chemical Property Combustibility** -

Lab: Physical & Chemical Properties

Problem: What are the physical and chemical properties of common substances?

Procedure:

Step 1: PHYSICAL PROPERTIES

- 1. Put a small amount of the substance on one area of the waxed paper.
- 2. Identify the substance's color and texture. **RECORD DATA**.
- 3. Use a magnifying lens to observe the crystal shape of each substance. **RECORD DATA.**

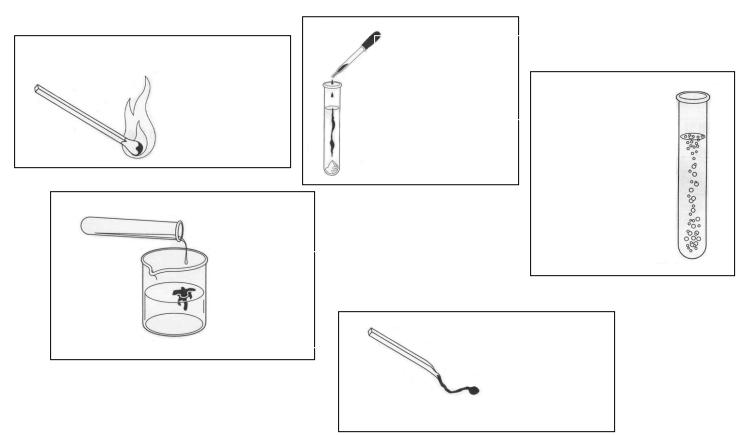
Step 2. CHEMICAL PROPERTIES

- 1. Test the substance's reaction to water by adding 3-4 drops of water to the substance. **RECORD DATA.**
- 2. Test the substance's reaction to vinegar by adding 3-4 drops of vinegar to the substance. **RECORD DATA**.
- 3. Test the substance's reaction to iodine by adding 3 -4 drops of iodine to the substance in the spot plate. **RECORD DATA.**

Observations: In your notebook, make an observation table like the one below.

Substance	Appearance	Crystal Form	Reaction with Water	Reaction with Vinegar	Reaction with lodine

Questions:


- 1. For each white substance, there is a unique property that identifies it from the others. Identify this property for each one.
- 2. What is the identity of the unknown substances? Explain how your observations support each of your identifications.
- 3. Make a list of all of the chemical and physical properties you observed during this activity. (Hint: Did you observe malleability?)

Conclusion: Write a concluding statement to the physical and chemical properties of the substances in this lab.

Physical Change –				
	e.g. changes of state (melting, boiling, freezing, condensation, etc.) and dissolving			
Most p	hysical changes are			
Chemi	cal Change –			

e.g. combustion, corrosion

Clues that a Chemical Change has occurred:

Homework: Physical and Chemical Changes

State whether the following changes are <u>physical</u> or <u>chemical.</u> Explain how you know.

Change	Physical or Chemical?	Clue
ice melts		
sulfur is burned		
glass breaks		
a match is struck		
mercury is heated to produce		
mercury vapour		
copper sulfate dissolves in		
water		
a cake is baked		
iron rusts		
wax hardens on a candle		
silver tarnishes		
leaves change colour and fall		
nail polish remover		
evaporates		
wood burns		
a dish rag dries		
wood is hammered together		
to build a playhouse		
sugar dissolves in tea		
vinegar is added to baking		
soda		
muddy water is allowed to		
settle		
an egg is fried		
butter is melted for popcorn		
sand is separated from gravel		
food spoils		
lemonade powder is mixed in		
water		
the lawn is mowed		
metal rusts		
hair is bleached		
fireworks explode		
oranges are squeezed to		
make orange juice		
milk is poured on your		
oatmeal		
leaves change colour and fall		

Lab: Physical & Chemical Changes

Procedure: Read the procedures outlined at each station carefully.

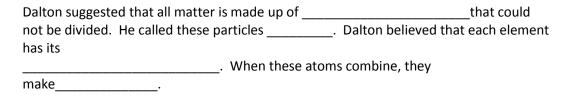
Observations & Conclusions:

Observations Before	Observations After	Physical or Chemical Change?	Reason(s)
Hydrochloric Acid			
Magnesium			
Lead Nitrate			
Potassium Iodide			
Magnesium (burning of)			
Copper (II) Sulphate			
Water			

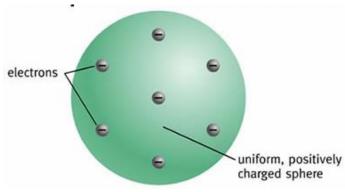
Discussion:

1.	(a)	hib woH (you determine a	nhι	/sical	change?
_ .	ıu,	, i i o vv aia	you actermine a	ρ_{111}	Jicai	CHAILEC:

- (b) How did you determine a chemical change?
- 2. (a) Which of the experimental changes was the easiest to determine? The hardest?
 - (b) Do you think that classifying changes as physical is easier than chemical? Explain.


1.	The Greeks	(450 to	350 B.C.E.,	Before	Common	Era)	١
----	------------	---------	-------------	---------------	--------	------	---

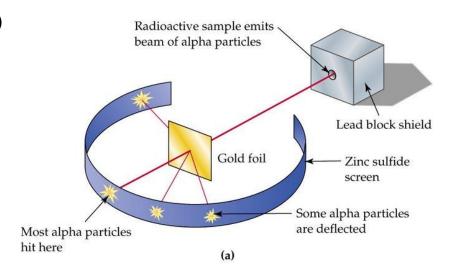
The ancient Greek people believed that all matter was made of the four "elements": ______, _______ & ______.

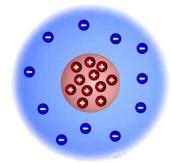

Everything on earth was a combination of these four things.

2. John Dalton (An English School teacher and a Chemist)- 1800s

3. William Crookes and J.J. Thomson (late 1800s)

William Crookes invented th	ne
	When he put
electricity through the gas in	n the tube, it gave off a
Tho	mson found that this light
could be	Thomson
said that atoms must have	
ca	lled
That meant that there must	also be


Thomson made up the "______" model of the atom. Atoms are made up of positive charges and electrons all

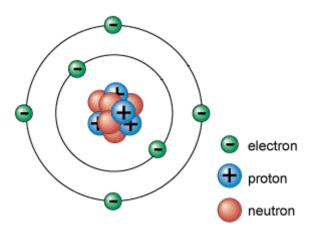

4. Rutherford's Gold Foil Experiment (1911)

Ernest Rutherford was testing Thomson's

model of the atom. He shone very tiny, high speed particles (called _______) through a piece of ______. He thought that the particles were so tiny that they would ______ the foil. Most of the particles did, but some _____. They must have hit

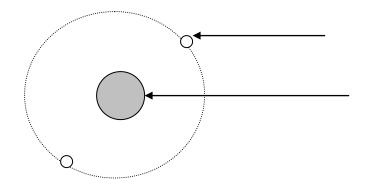
something hard in the atom.

Rutherford decided that the	the atoms must contain
-----------------------------	------------------------

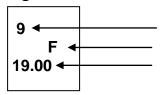

	Rutherford said that atoms
contain a	nucleus, made up of positively
charged protons, surrounded by a	

5. Bohr and Flame Tests

Neils Bohr studied the element hydrogen. atoms always gave off the same	When he added energy, the .
Each element has its own	of light. Bohr realized that
the light was given off when the electrons	
excited. When the electrons	
	, they give off this energy as
·	
Bohr realized that the electrons were not i	t clouds around the nucleus, they


were in "______", just like the planets orbit the sun.

6. Chadwick and the Neutron


A third particle in the atom was found, called the _____. It is found in the _____ and has _____. This is the model of the atom that we still use today.

The following is a schematic drawing of the Bohr-Rutherford model of the atom:

Subatomic Particles	Position	Movement	Charge	Relative Size
proton				
neutron				
electron				

From the periodic table you can obtain the following information: e.g. fluorine

Atomic number:

Atomic Mass (Mass Number):

To determine the number of neutrons:

To determine the number of electrons (assuming the atom has a neutral charge):

1. c element name: # of protons = atomic number = # of neutrons = atomic mass = # of electrons =

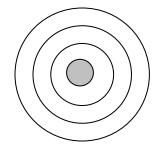
2. B element name: # of protons = atomic number = # of neutrons = atomic mass = # of electrons =

3. | 19 | element name: # of protons = atomic number = # of neutrons = atomic mass = # of electrons =

Atomic Number	Atomic Mass	Symbol	Name	# of protons	# of neutrons	# of electrons

Atomic Number	Atomic Mass	Symbol	Name	# of protons	# of neutrons	# of electrons
17						
		Li				
	24.3					
				4		
			Nitrogen			
				97		
						6
		В				
	26.98					
				16		
			Fluorine			
2						
		Cs				
						18
	39.09					
			Tin			
		Si				
	132.9					
			Nickel			
1						
				31		
					5	
						30
			Manganese			
		Fr				
				47		
24						

Lesson 7a: Bohr-Rutherford Diagrams


		grams that allow us to (protor	
electrons). Remember th	_	are found in the	
while		around the nucleus.	/
Electrons are placed in _ electrons.		Each shell holds a	of
Starting with the shell clo	osest to the nucle	eus:	
Shell holds e Shell holds e Shell holds e Shell holds	lectrons lectrons		

Draw the Bohr Rutherford diagram for Magnesium.

Lesson 7b: Electron Dot Diagrams

			A
All atoms ar	·e	when they have	
shell (a electro			
Electrons ar	e	from	electron
shell. The e	lectrons from the		, therefore we
	all of the electrons in the		
•		ohr diagrams (that show all o	_that show
electrons):			
	Rutherford-Bohr Diagram	Electron Dot Diagram	Group #
eg. ₉ F			

eg. ₂₀Ca

Homework: Which Element is it?

The names of many elements seem to be obscure Latin, but in fact many of these names appear to be derived from common English words and phrases. Using the following clues, determine the names of the elements suggested.

- 1. An amusing prisoner
- 2. What may be granted after a divorce
- 3. Half a dime
- 4. What a doctor does
- 5. To add spices
- 6. The leg joint above the calf
- 7. Have went
- 8. An Asian sub-continent
- 9. A kitchen work area
- 10. What the cowboy said after riding the bronco
- 11. View by a boy named Calvin
- 12. What you do with dead people
- 13. Grab him
- 14. The Lone Ranger's horse
- 15. A famous English Theatre
- 16. Police officer
- 17. Not fat
- 18. Well driller's chant
- 19. To press a shirt
- 20. He who rules the sea
- 21. Large building used to store automobiles
- 22. What I do when I am hungry
- 23. Gin with water in it
- 24. What police do to a place of illegal activity
- 25. What factories manufacture cloth have
- 26. If you are not pro-money, you are .
- 27. Mind your own .
- 28. They injected the spy with _____.
- 29. What the farmer said to the rancher about runaway cattle
- 30. Mattresses may be soft or _____
- 31. Some tiles are used on walls, others as _____.
- 32. Opposite of Guyium
- 33. Put on your coat. It's very _____.
- 34. What you get when you cut a whole into 2 parts
- 35. Two halves make a
- 36. Musical instrument
- 37. A kind of car
- 38. Molly's jeans
- 39. What lies at the end of the yellow brick road
- 40. Mr. Foss is in our favour
- 41. Dog owned by Mickey Mousium
- 42. Carbonated soft drink
- 43. What actors do in movies
- 44. Said the runner after completing the marathon
- 45. What Reverend Sam does to engaged couples.

Rutherford-Bohr and Lewis (Electron) Dot Diagrams – Remember that Bohr Rutherford Diagrams draw all of the electrons while the Lewis diagrams only show the valence electrons!

Element	Atomic Number	Rutherford-Bohr Diagram	# of Electrons in the Outer Orbital	Group Number on Periodic Table	Electron Dot Diagram
Na					
Mg					
0					
AI					
Н					
S					
С					
N					

Homework: After you have completed the above chart, draw the electron dot diagrams for atoms with atomic number 1 to 20, 34, 35, 36, 37, 38, 52, 53, 55, 56 and 85