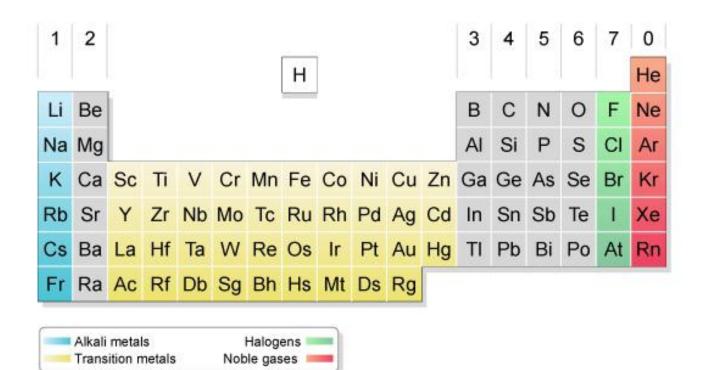


SNC 1DI

Chemistry: Atoms, Elements & Compounds - PART 2

Lesson	Topic	Lesson	Learning Goals	Homework
1.10	Exploring the Periodic Table	☐ Historical Organization of Table☐ Modern Periodic Table	 understand the fundamentals of the modern periodic table including development and historical arrangements know key patterns in the arrangement of the periodic table 	HW: pg190 Q#1-3 Pg193Q#1-2 Pg199Q#1-3
1.11	Groups of the Periodic Table	Major Groups (4)Metals, Non Metals, Metalloids	 compare & contrast the physical/chemical properties of elements within a group and between other groups describe the characteristics of M, NM & Mlds 	HW: pg195 Q#1-4 Pg193Q#1-2
1.12	Ions & Stability	☐ Ions & Octet Rule - note☐ Ions - worksheet	understand why & how ions form from metals and nonmetals show how charges on ions are related to their formation	HW: pg213 Q#1-5 Pg217Q#7-10
1.13	Formation of Compounds	☐ Forming & Naming Compounds: Ionic ☐ Counting Atoms	 demonstrate how to form a compound from ions identify the name & formula for common ionic compounds calculate the number of atoms in a specified compound 	HW: pg220 Q#1-3 Pg221-PracticeProblems Worksheet: Ionic Compounds
1.14	Are Chemicals Good for Us?	Harmful Chemicals in Our Environment	assess social, environmental and economic impacts of the use of common elements or compounds	
1.15	Review	Review	Pg 242 - unit outline Pg246-247 Q#1-20, 21a-c, 27-31, 35,36,51,55-57a-f	
1.16	TEST	☐ Unit Test		

The Periodic Table

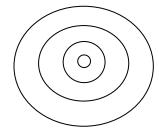

The periodic table of the elements was	originally developed, in the form that we are familiar with, by
a Russian chemist named	His table was based on
	of the elements known at the
time. Mendeleev noticed that these	over and over again
when the elements were	It was this repetition that
led to the choice of the name	
For our purposes the table organizes th	e elements in three ways:
Metals and Non-Metals	Increasing metallic character
Elements that tend to	and become
are found	on the
of the perio	dic table. These elements are 🚆 🖟 🔼 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sc
and have the character	istic properties of metals: they Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Tr Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Pc Pc Tr Pt Pc Pc Pc Pc Pc Pc Pc
are,	
	Metals Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tr Metalloids Th Pa U Np Pu Am/Cm Bk Cf Es Fm M
	Negradala
	
Elements that tend to	and become are
found on the	of the periodic table. These elements are
and have the characteristic properties of	f non-metals:,,
	·
There is no clear-cut division between t	he two types of elements but the,
	, the metallic elements from the
	may have properties of both types of
elements and are called	
elements and are called	'
Families or Groups	
	ize the elements into groups or families
	ch group is identified by a Roman Numeral and may, or may
sourced by their	s of elements have
caused by their	In groups of, the
	the
element is a	t the The elements of one
family, group VIII, also called the	or the, are almost
completely becar	use they have the electron arrangement.
<u>Periods</u>	
	across the table. In a period there is a gradual change from
	nber increases and as the number of electrons in the outside
	in the outermost shell and ends
with 8 electrons in this outer shell, period	od 1 being the only exception.

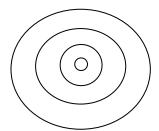
Groups of the Periodic Table

Chemical Group – the set of elements in the same column. These elements tend to have similar physical and chemical properties.

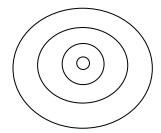
all shiny, silver-coloured metals
found ______ and easily form compounds with other elements
Group 2 – ______
fairly reactive, but ______
Group 7 – ______
the ______
they often appear as part of a compound rather than as elements
Group 8 – ______
these elements are ______

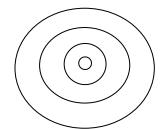
(almost never react with other elements)

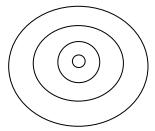

The Stable Octet and Ion Formation

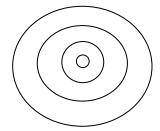

For many ele		en they have a uter shell holds eight electrons. This electron
helium, neon		electron shell (), for example, ats do not want to lose or gain electrons, they are
eg. Argon, a	tomic number 18	
However, for	r the	rangement. These atoms will tend to
	electron ar to achieve a Stable Oct	
An		, in which the
When an ato		will form a ion. When an atom ion.
	om has 1, 2 or 3 electrons in its oute achieve a stable octet electron arra	er shell (VALENCE SHELL) , it will tend to lose these ingement.
eg. ₃Li		
eg. ₁₃ Al		

Non-metals

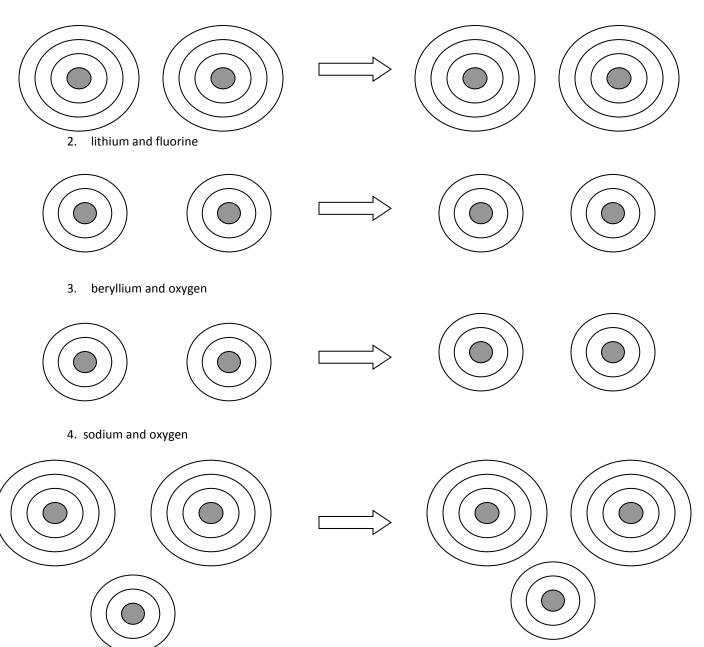

When an atom has 5, 6 or 7 electrons in its outer shell **(VALENCE SHELL)**, it will tend to gain electrons to achieve a stable octet electron arrangement.






eg. 8O

eg. ₁₅P



Ionic Bonds: Forming Ionic Compounds

Electrons	(well, almost never), exis	t just free in space. When o	ne atom loses an electron, the electron is
When an atom loses o	one or more electrons, it bec	omes	
	_ charged ion is called a		
	_ charged form is called a	·	
\\/\ban_aa_a_a_a_a_a	:-	+ la a a ma a	
_	s one or more electrons, i charged ion is called a		
Α	charged for is called a	•	
	ou may know that	Thi	s attraction is called
			ecomes
	the negatively charged ion th	nat was created when anoth	er atom
	· · · · · · · · · · · · · · · · · · ·		
For example:			
•			
12Mg	12Mg		Electrostatic attraction between positive and negative ions (an lonic bond)
80	st	02-	, , , , , , , , , , , , , , , , , , ,
The attraction betwee		ions that is created when el	ectrons are transferred is called an
	·		
	als and non-metals are attra ned is called an		is formed, the new
We can find the cham	ical formulas for ionic compo	ounds using the "	"rulo:
vve can iniu the them	icai formulas for fonic compo	ounus using the	i uië.
1. Write the	, incl	uding its charge.	
2. Write the	, incl	uding its charge.	
	e		
If the subscripts c	an be reduced to	. do so.	

Practice Questions:

1. sodium and chlorine

Naming ionic compounds:

- 1. Name the metal first, use its regular name
- 2. Name the non-metal second, change the ending of its name to "ide" (the names are written on your ion chart)

**	onlv	the	non	-metals	s have	"ide"	names
----	------	-----	-----	---------	--------	-------	-------

For example,	
Calcium & fluorine	
Lithium & sulphur	

Ions & Ionic Bonding

1. Complete the following chart. Be sure to look at the net charge!

	nowing chart. be st					7 11.11
Element	Atomic Number	Number of Protons	Number of Electrons	Number of Neutrons	Mass Number	Net Charge
Ве				5		0
	16				35	-2
Fe			24		60	
		55		73		0
	84		84		202	
		13				+3
	38					+2
I			54			
					197	+1
		87	86			
	82					-4
				35		+1
Ро			86			
					35	-1
		1	0			

2. Complete the formation of ionic compounds using the elements listed below. Be sure to complete all steps to show the transfer of electrons, and name the end products of your reaction.

2.3.	Li and F Ca and S Al and N Mg and Cl	10. 11.	Cs and C Sr and Se B and S Be and I	18. 19.	K and S Ga and Cl Be and S Mg and P
5.	Na and O K and Br	13.	i and N Ba and C	21.	Al and F Fr and O
	Sc and S Al and O		Na and Br Li and O		B and Br Sc and S

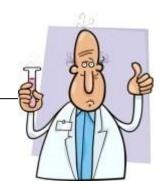
NAMING IONIC COMPOUNDS

1. Write the formula for the following binary compounds:

sodium fluoride	zinc nitride
silver nitride	strontium oxide
aluminum chloride	aluminum carbide
barium oxide	lithium sulfide
magnesium bromide	beryllium iodide
calcium sulfide	calcium bromide
lithium oxide	potassium chloride
barium sulfide	silver sulfide
potassium phosphide	zinc carbide
magnesium carbide	boron nitride

2. Name the following binary compounds:

Na₂O	Zn_3P_2
Li ₄ C	Ba ₃ N ₂
MgBr ₂	MgO
Csl	CaS
Ag ₃ N	BeO
Sr ₂ C	ZnBr ₂
CaCl ₂	NaF
BaO	Sr ₃ P ₂
AlBr ₃	AgI


Naming Ionic Compounds

Write the correct name for:			
1) MgS			
2) KBr			
3) Ba ₃ N ₂			
4) Al ₂ O ₃			
5) Nal			
6) SrF ₂			
7) Li ₂ S			
8) RaCl ₂			
9) CaO			
10) AlP			
11) K ₂ S			
12) LiBr			
13) Sr ₃ P ₂			
14) BaCl ₂			
15) NaBr			
16) MgF ₂			
17) Na ₂ O			
18) SrS			
19) BN			
20) AlN			

SNC 1D

Write the correct formula for:

1) magnesium oxide	
2) lithium bromide	
3) calcium nitride	
4) aluminum sulfide	
5) potassium iodide	
6) strontium chloride	
7) sodium sulfide	
8) radium bromide	
9) magnesium sulfide	
10) aluminum nitride	
11) cesium sulfide	
12) potassium chloride	
13) strontium phosphide	
14) barium iodide	
15) sodium fluoride	
16) calcium bromide	
17) beryllium oxide	
18) strontium sulfide	
19) boron fluoride	
20) aluminum phosphide	

2 NH₄Cl

3 AI(NO₃)₃

Na ₂ CO ₃		
Type	of	Ato

Type of Atom (Provide the name of the element)	# of Atoms
TOTAL:	

$NH_4C_2H_3O_2$

111140211302	
Type of Atom (Provide the name of the element)	# of Atoms
TOTAL:	

$Pb(NO_3)_2$

Type of Atom (Provide the name of the element)	# of Atoms
TOTAL:	

$Ca_3(PO_4)_2$

of Atoms

3 BaCl₂

Type of Atom (Provide the name of the element)	# of Atoms
TOTAL:	

4 Al₂(CO₃)₃

Type of Atom (Provide the name of the element)	# of Atoms
TOTAL:	

All substances, natural and manufactured, are chemicals. Our society relies heavily on manufactured chemicals such as paints, plastics, fertilizers, and pesticides. Issues involving the use of chemicals go beyond whether the product we end up with is safe. It includes concerns about the health of workers exposed to toxic substances during manufacture. It also means preventing toxic substances from escaping into the environment.

INSTRUCTIONS

Read the assigned section(s) and then answer the question(s) on a separate sheet of paper.

PART 1 - Working with Toxic Elements (P.200)

- 1. In the 18th and 19th centuries, mercury was used in hat making. Why was this a problem?
- 2. Who else might be in danger? How can they be protected?

PART 2 - Heavy Metals in Fish (P.201)

- 3. What are the main causes of heavy metal pollution?
- 4. Suppose you go fishing at a pond contaminated with mercury and catch a minnow (a fish at the bottom of the food chain) and a large trout (a fish at the top of the food chain, which eats other fish). Which fish would have a higher concentration of mercury in its body? Why?
- 5. Why might Aboriginal people and people in remote communities feel the effects of heavy metal contamination of fish more than most groups in Canada?

PART 3 - Diamonds: Responsible Mining and Production (P.205)

6. List 3 benefits and 3 drawbacks to diamonds and diamond mining.

PART 4 - Elements and Compounds in the Environment (P.232-235)

- 7. What are some of the health problems associated with exposure to mercury?
- 8. What is the effect of ozone in the upper atmosphere?
- 9. CFCs were originally thought to be safe and useful. Why were they determined to be unsafe?
- 10. List four ways to aid in the safe handling of regulated substances.

PART 5 - POPs and Pesticides (P.236)

- 11. What does POPs stand for? What is it? Why are they of a concern?
- 12. What four properties of POPs allow them to bioaccumulate and biomagnify?

PART 6 - Fluoridation of Drinking Water (P.237)

13. Fluoride is often added to drinking water to help prevent tooth decay. However, some people argue that fluoridation of drinking water is unsafe. Why is tooth decay a complicated process?